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Resonance Conditions of Open Resonators

at Microwave Frequencies

TATSKJO ITOH, MEMBER, IEEE, AND RAJ MITTRA, FELLOW, IEEE

Absfracf—This paper presents an extension of Vajnshtejn’s ap- results are presented for FP resonators operated at microwave

preach for computing the resonance frequencies and loss factors of through millimeter frequency range.

Fabry-Perot (FP) resonators at microwave frequencies. Numerical

I. INTRODUCTION
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each other. Though much has been reported ontheanaly-

sis of such resonators, most of these analyses employ a

conventional integral equation approach [1], [2]. An

alternate and efficient method for attacking this problem

has been introduced by Vajnshtejn [3] by regarding the

resonator structure as a truncated parallel-plate wave-

guide. He begins by computing the reflection properties

at the open ends of the waveguide (open side walls of

the resonator) and employs a simple transmission-line

theory for deriving the resonance condition. In comput-

ing the reflection coefficient he makes advantageous use

of the asymptotic forms which are valid at optical fre-

quencies. Other workers, such as Li and Zucker [4], have

also found this approach useful for solving open resonator

problems.

The purpose of this paper is to extend Vajnshtejn’s

approach to the microwave frequency range where the

optical approximation is no longer valid. This is done by

working with a more exact form of the expression for the

reflection coefficient which is valid for arbitrary fre-

quencies.

The readers who are interested only in numerical com-

putation may bypass the theories in Section II of thk

paper and directly follow the numerical procedures listed

in Section III. .

II. DERIVATION OF THE EIGENVALUE EQUATION

Fig. 1 shows the cross section of the plane-mirror open

resonator. For simplicity of analysis, it is assumed that

the resonator is infinite and uniform in the y direction.

We restrict ourselves to the case of TM (with respect

to z) fields, although the TE case can be handled in a

similar manner.

We will first describe the formula for computing the

reflection coefficient at the open end of the resonator.

This quantity is necessary in deriving the eigenvalue

equation of the resonance characteristics. To this end,

the resonator is viewed as a parallel-plate waveguide

(infinite y dimension) in which the field is traveling in

the +,z direction. If we assume that there is a negligible

amount of coupling between the two open ends at z = O

and z z — 1, it is possible to express the reflection co-

efficient at one of the open ends, say, at z = O, via the

Wiener-Hopf procedure [5].
Assume that the TM,O mode is incident at z = O from

the left. The field inside the semi-infinite parallel plates is

‘v= cOs[%’z-bdexp(i@Qz)

k = w/c (lC)

where w is the angular frequency, c is the velocity of light,

1
2b

Fig. 1. Plane-mirror open resonator.

and R.~ is the reflection coefficient of the TM~o mode due

to the TM.o mode incidence. The time factor exp ( – iwt)

will be suppressed throughout this paper. We will also

restrict ourselves to the case when q is even and hence n

is even, though the odd mode case can be handled in

much the same way.

The reflection coefficients R.g can be derived once the

field expression for H. is available. The latter may be ob-

tained via the application of the Wiener–Hopf procedure.

Since the details of derivation and the solution of the

Wiener–Hopf equation have appeared in a number of

previous publications [5], [6], we will omit the details

and quote ODIY the final expression for the reflections

coefficients R.g:

R =_(~~+k)(@n+k)
w (0, + A)h

G+ (PJ G+(BJ (2)

where G+(a) is the so-called factorized function of the

Wiener–130pf kernel and is typically expressed in terms

of an expression containing an infinite product [5]. The

expression for G+(a) is

‘+(a)‘t%Y’2expr+[1-c+ln(=)+i:l}

[

ib(d — W)ll’
in

(

o! — (az — k’) 1/2
. exp

T k )1
. i?)exp(%$).=:ven(1+s (3)

where C = 0.57721 . . . (Euler’s constant).

It is found, however, that the computation of G+(a) is

quite laborious for large kb, owing to the slow convergence

of the infinite product. The situation becomes especially
critical when lcb is in the optical or quasi-optical range.
To alleviate this difficulty, it is useful to use an alternate

form for G+(a) which converges much more rapidly:

‘+(a) =(%Y’ex%)(1+3”2
exP{;]pln[l+,,(,3 kb,,21

1

exp (i2kb) exp ( —.s) ~~
(4)

“exp (i2kb) exp ( –s), – 1 “

The details of the transformation from (3) to (4) maybe
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found in Bates [6]. The integration path P in (4) is

along both sides of the branch cut located on the positive

real axis in the complex s plane. Because of the factor

exp (—s), the integral convergm quite rapidly for any

value of M. It may be verified that the asymptotic form

of G+ used by Vajnshtejn [3] can be derived by taking

the limit of lib ~ co in (4).

The next step is the derivation of the eigenvalue equa-

tion for the resonance condition of the TMqO~ mode

where m is the resonant mode index associated with the

field variation in the z direction corresponding to the

TM,O waveguide mode. For the resonant TMQO~ mode in

a cavity, the standing wave fields may be written in a

standard form as shown below. Depending on whether

the Hu field is even (m even) or odd (m odd) with respect

to z = – 1/2, one writes the H. field as

l~cos[%(-b)lcos[~(z+i)l‘Ven“a)

‘“=\~cos[~(.-bl]~n[P,(z+~)],odd. G5b)

For convenience of later comparison, we rewrite (5) as

H.=j
+ exp (– @J) exp ( –i@,z) ), even (6a)

‘Cos[%x-bd‘exp“Bqz)
\- exp ( —i~Ql) exp ( —i@Qz)}, odd (6b)

where K and 1? in (.5) and (6) are arbitrary constants.

Returning to (la) we note t~~at the Tl& field in the open-

ended waveguide have the form

(7)

The resonance condition may now be obtained by com-

paring (6) and (7). We nol;e that the open-ended wave-

guide satisfies the resonance condition if we set

R,, = (–l)~exp (–iPgl), m=o, 1,2, . . . (8)

which is the desired charac:~eristic equation for the open

resonator. The unknown here is 13qwhich in turn deter-

mines the resonant frequency u,. It should be pointed out

that since the resonator is open, (8) has solutions only for

complex values of angular frequency ~,, and hence of

wavenurnber i%..The imagimu-y part of a’ (or k.) accounts

for the spill-over or radiation losses at the open end of the

resonator.

III. NUMERICAL ALGORITHM

Although a closed-form solution of the nonlinear (8) is

not possible, it is nevertheless tractable via the use of

iterative algorithms. To thk end, let us first express Rqq as

R,, = –exp [i~,(sl + isz) 1. (9)

Equation (9) may be interpreted as follows. If the open

end of the parallel-plate waveguide was an ideal open

circuit for the TM*O mode, Rgq would be exactly — 1, sI,sZ

would be identical y zero, and the resonant frequencies

would be purely real. However, in the actual situation

S1 and SZ are not zero; the value of S1 accounts for the

additional phase shift, while a nonzero SZrepresents the

presence of radiation or spill-over losses.

Substituting (9) into (S), one obtains

exp [ibg(l + S1+ isz)] = (–1)”’+1, m = 0,1,2,””0 (lo)

when m is the resonance index associated with the field

variation in the z direction. Solving for p~ we get

~, = (m+ l)r

l+sl+is2”
(11)

The complex resonance frequency w,, can be determined

from (lb), ( lc), and (11). The pertinent equations are

Wc = Ckc

The real and imaginary parts of k, are obtained from (12)

and are given by the expressions

k, = lcl – ik~ ( 13a)

1

‘1 = w ‘x + ‘X2+ 4Y2)1’2]1’2
(13b)

1c2= Y/k, (13C)

where

()x= $’2+ (m+ 1)%2[(L + s,)’ – s22]

[(t + SJ2 – S22]2+ 4s,’(1 + s,)’
(14a)

(m + l) ’rzsl(l + s,)

y = [(1+ s,)’ – s,’]’ + 4s,’(1 + s,)’ “
(14b)

The numerical routine for finding the resonance condi-

tion of the TM,O~ mode is as follows.

1) For a given set of parameters b,l,q,m, let SI = sz = O

and find k. from (13) and (14).
2) Find the value of Rgq from (4) and (2) with k = k..

3) Substitute the resulting value into (9) and find new

values of SI and sZ.

4) Find the new value of k. from (13) and (14) and

repeat steps 2) and 3) until the process converges to

satisfy the stopping criterion.

5) The resonance condition is given by the value of kc

expressed in terms of the final values of SI and .w

As the stopping criterion, the values of s1, and sz and

also the values of R** in the nth and (n + 1) th iterations,

are compared. If all of these cliff erences are smaller than

10-4, the iteration process is terminated and kl and k’ are

derived from (13).
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Fig. 2. Reflection coefficient at the open end of a semi-infinite
waveguide.

TABLE I

This method

~

b=5cm, l=5cm, q= 500

-1
Units of kl and k2 are cm .

IV. i31UMERICAL RESULTS

Fig. 2showsthe typical plot of ~qqfortheq = 2 case,

where~ = (2kb/~) — qand R~Q = I Raq I exp (—i@gQ). As

expected R~g becomes – 1 at the cutoff 6 = O. These

curves are identical to the ones found in [6]. To check

theaccuracy of the present method, several cases of large

q, e.g., q = 500, were computed and compared with the

resonance condition derived from Vajnshtejn’s asymptotic

formula. As is evident from Table I, the two results agree

quite well.
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TABLE II

f ~ (GHz) Resonator (

15.23 254.24

15,91 67.24

17.00 32.51

75.05 8020

75.21 2005

75.48 891

375.01 3.56 X 10”

375.05 0.89 x 10

375.10 0.39 x 10”

b=lcm ,9. =5 CIII

Table 11 shows some of the examples of resonant fre-

quency fI = (ck,/27r) and the quality factor Q = (k,/2kz)

of the open resonator at microwave through millimeter

frequencies. As expected, the loss due to the diffraction

(spill-over loss) increases as the transverse mode number

m is increased for the same q. It is also clear that the loss

is smaller for larger values of q

V. CONCLUSIONS

A numerically efficient method is presented for com-

puting resonance conditions of an open resonator of the

FP type. The number of iterations required is usually less

than 10 (typically as small as 4). Typical computation

time on the IBM 360/75 is about 2 s.
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