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Resonance Conditions of Open Resonators

at Microwave Frequencies
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Abstract—This paper presents an extension of Vajnshtejn’s ap-
proach for computing the resonance frequencies and loss factors of
Fabry-Perot (FP) resonators at microwave frequencies. Numerical
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results are presented for FP resonators operated at microwave
through millimeter frequency range.

I. INTRODUCTION

ABRY-PEROT (FP) and other types of open reso-
nators find useful applications at optical as well as
millimeter or microwave frequencies. Typically, these
resonators consist of two plane or curved mirrors facing
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each other. Though much has been reported on the analy-
sis of such resonators, most of these analyses employ a
conventional integral equation approach [1], [2]. An
alternate and efficient method for attacking this problem
hag been introduced by Vajnshtejn [3] by regarding the
resonator structure as a truncated parallel-plate wave-
guide. He begins by computing the reflection properties
at the open ends of the waveguide (open side walls of
the resonator) and employs a simple transmission-line
theory for deriving the resonance condition. In comput-
ing the reflection coefficient he makes advantageous use
of the asymptotic forms which are valid at optical fre-
quencies. Other workers, such as Li and Zucker [4], have
also found this approach useful for solving open resonator
problems.

The purpose of this paper is to extend Vajnshtejn’s
approach to the microwave frequency range where the
optical approximation is no longer valid. This is done by
working with a more exact form of the expression for the
reflection coefficient which is valid for arbitrary fre-
quencies. ‘

The readers who are interested only in numerical com-
putation may bypass the theories in Section II of this
paper and directly follow the numerical procedures listed
in Section III.

II. DERivATION OF THE E1GENVALUE EqQUATION

Fig. 1 shows the cross section of the plane-mirror open
resonator. For simplicity of analysis, it is assumed that
the resonator is infinite and uniform in the y direction.
We restrict ourselves to the case of TM (with respect
to z) fields, although the TE case can be handled in a
similar manner.

We will first describe the formula for computing the
reflection coefficient at the open end of the resonator.
This quantity is necessary in deriving the eigenvalue
equation of the resonance characteristics. To this end,
the resonator is viewed as a parallel-plate waveguide
(infinite ¥ dimension) in which the field is traveling in
the -2 direction. If we assume that there is a negligible
amount of coupling between the two open ends at z = 0
and z = —I, it is possible to express the reflection co-
efficient at one of the open ends, say, at z = 0, via the
Wiener—Hopf procedure [5].

Assume that the TM,, mode is incident at z = 0 from
the left. The field inside the semi-infinite parallel plates is

q .
H, = cos [2—7; (@ — b):l exp (iB2)

+ i R,, cos {g;—r (x — b)] exp (—1B.2) (la)

n=0

@A T
kE=w/ec (1e)

where w is the angular frequency, c¢ is the velocity of light,
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Fig. 1. Plane-mirror open resonator.

and R,, is the reflection coefficient of the TM.,, mode due
to the TM, mode incidence. The time factor exp (—iwt)
will be suppressed throughout this paper. We will also
restrict ourselves to the case when ¢ is even and hence n»
is even, though the odd mode case can be handled in
much the same way.

The reflection coefficients R,, can be derived once the
field expression for H, is available. The latter may be ob-
tained via the application of the Wiener—Hopf procedure.
Since the details of derivation and the solution of the
Wiener-Hopf equation have appeared in a number of
previous publications [5], [6], we will omit the details
and quote only the final expression for the reflections
coefficients R.,:

ROEIEY)
(Bg + Br)Ba

where G,.(a) is the so-called factorized function of the

Wiener—-Hopf kernel and is typically expressed in terms

of an expression containing an infinite product [5]. The
expression for Gy («) is

ink 1/2 N b 2 .
G a) = (Snlzb b) exp {% [1 —C+1In (75)) + 1 %]}
[ib(az — k)2 (a — (a? — k2)1/2):|'
- exXp In
T k

i a . 2ab
.,,=2I,£,en (1 =+ E;) exp (2 ;;)

where C' = 0.57721--. (Euler’s constant).

It is found, however, that the computation of Gy (e) is
quite laborious for large kb, owing to the slow convergence
of the infinite product. The situation becomes especially
critical when kb is in the optical or quasi-optical range.
To alleviate this difficulty, it is useful to use an alternate
form for G, («) which converges much more rapidly:

‘ in kb 1/2 kb ) —-1/2
o= (2 o () (1)

-exp {%Lln [1 + ﬁk—b)ﬁ]

__exp (12kb) exp (—3s) ds}
exp (92kb) exp (—s) — 1

an = G+ (611) G+(Bq) (2)

(3)

(4)

The details of the transformation from (3) to (4) may be
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found in Bates [6]. The integration path P in (4) is
along both sides of the branch cut located on the positive
real axis in the complex s plane. Because of the factor
exp (—s), the integral converges quite rapidly for any
value of kb. It may be verified that the asymptotic form
of G, used by Vajnshtejn [3] can be derived by taking
the limit of kb — o in (4).

The next step is the derivation of the eigenvalue equa-
tion for the resonance condition of the TMy, mode
where m is the resonant mode index associated with the
field variation in the 2z direction corresponding to the
TM, waveguide mode. For the resonant TM,, mode in
a cavity, the standing wave fields may be written in a
standard form as shown below. Depending on whether
the H, field is even (m even) or odd (m odd) with respect
toz = —1/2, one writes the H, field as

K cos [%% (r — b)] cos [Bq <z + 12)] , even (5a)

ﬁ K cos [% (z — b)] sin [@1 (z + é)} , odd. (5b)

For convenience of later comparison, we rewrite (5) as

H, =

K cos _% (xr — b}] fexp (48,2)

o, = + exp (—i8,) exp (—i8,2)}, even (6a)
K cos LZ—Z (x — b)] {exp (18,2)

— €xp <_1;3ql) exp (—748,12) }, odd (Gb)

where K and K in (5) and (6) are arbitrary constants.
Returning to (1a) we note that the TM, field in the open-
ended waveguide have the form

H, = cos [?)—7; (o — b>] (exp (iBe2) + Rug cxp (—i822) ).

(M

The resonance condition may now be obtained by com-
paring (6) and (7). We note that the open-ended wave-
guide satisfies the resonance condition if we set

qu = (——l)mexp (_iﬁql)’ m=0,12 -.- (8)

which is the desired characteristic equation for the open
resonator. The unknown hcre is 8, which in turn deter-
mines the resonant frequency w.. It should be pointed out
that since the resonator is open, (8) has solutions only for
complex values of angular frequency o, and hence of
wavenumber k.. The imaginary part of w, (or k,) accounts
for the spill-over or radiation losses at the open end of the
resonator.

IIT. NUMERICAL ALGORITHM

Although a closed-form solution of the nonlinear (8) is
not possible, it is nevertheless tractable via the use of
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iterative algorithms. To this end, let us first express R, as
Ry = —exp [iﬂq(sl + 1) . 9

Equation (9) may be interpreted as follows. If the open
end of the parallel-plate waveguide was an ideal open
cireuit for the TM mode, B,, would be exactly —1, 1,8,
would be identically zero, and the resonant frequencies
would be purely real. However, in the actual situation
s; and s» are not zero; the value of s; accounts for the
additional phase shift, while a nonzero s, represents the
presence of radiation or spill-over losses.

Substituting (9) into (&), one obtains

exp [, (I + sy +is) ] = (=)™, m =0,1,2,--+  (10)
when m is the resonance index associated with the field
variation in the 2 direction. Solving for 8, we get
(m + U=
By = .
I+ 8+ 789

The complex resonance frequency w., can be determined
from (1b), (1c), and (11). The pertinent equations are

(11)

w, = ck,

(2 s (B [T
ks <2b +or=(3) i ml - @

The real and imaginary parts of k. are obtained from (12)
and are given by the expressions

k, = ky — ik, (13a)
by = %EX 4 (X b AYHWTE (13b)
ky = Y/k (13¢)
where
gm 2 (m + 1222 (1 4 s1)? — 8]
-2 4
X <2b> R I E T Rt
Y - (m 4+ 1)z (1 + s1) (14b)

LU+ 81)2 — 82 + 482 (L + s)?

The numerical routine for finding the resonance condi-
tion of the TM . mode is as follows.

1) For a given set of parameters b,l,gm, let s; =
and find k, from (13) and (14).

2) Find the value of R,, from (4) and (2) with k = k..

3) Substitute the resulting value into (9) and find new
values of s; and s,.

4) Find the new value of k. from (13) and (14) and
repeat steps 2) and 3) until the process converges to
satisfy the stopping criterion.

5) The resonance condition is given by the value of k.
expressed in terms of the final values of ¢ and s..

As the stopping criterion, the values of s;, and sy and
also the values of R,, in the nth and (n 4 1)th iterations,
are compared. If all of these differences are smaller than
104, the iteration process is terminated and k; and k; are
derived from (13).

32=0
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Fig. 2. Reflection coefficient at the open end of a semi-infinite
waveguide.
TABLE 1
This method Vajnshtejn
m K k, l ky k,
o 157.0807 0.893 x 167% 157.0808 0.922 x 1073
1 157.0842 3.58 x 107 157.0841 3.69 x 1074
2 157.0500 8.07 x 107 157.09C0 8.30 x 1074

b=5cm, £=5¢cm, qg= 500

. -1
Units of kl and k2 are cm .

IV. NumEricaL REsurrs

Fig. 2 shows the typical plot of Ry, for the ¢ = 2 case,
where & = (2kb/7) — qand Ry, = | Ryq | eXp (—iggq). As
expected R,, becomes —1 at the cutoff § = 0. These
curves are identical to the ones found in [67]. To check
the accuracy of the present method, several cases of large
¢, e.g., ¢ = 500, were computed and compared with the
resonance condition derived from Vajnshtejn’s asymptotic
formula. As is evident from Table I, the two results agree
quite well.

TABLE 1I
q “m f]:(GHz) Resonator Qf
0 15.23 254.24
2 {1 15.91 67.2
2 17.00 32.51
o 75.05 8020
10 | 1 75.21 2005 % 4 mm)
2 75.48 891
o | 35.01 3.56 x 10°
s0 [ 1 | 37s.05 0.89 x 10° O % 0.8 mm)
2 | a7s.10 0.39 x 10°

b=1cm, 2=5cn

Table II shows some of the examples of resonant fre-
quency fi = (ck;/2x) and the quality factor @ = (ki/2k,)
of the open resonator at microwave through millimeter
frequencies. As expected, the loss due to the diffraction
(spill-over loss) increases as the transverse mode number
m is increased for the same ¢. It is also clear that the loss
is smaller for larger values of ¢.

V. CoNcLusioNs

A numerically efficient method is presented for com-
puting resonance conditions of an open resonator of the
FP type. The number of iterations required is usually less
than 10 (typically as small as 4). Typical computation
time on the IBM 360/75 is about 2 s.
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